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Universal behaviour of two coupled circle maps 

A S Pikovskyt and V G Shekhov 
Institute of Applied Physics, USSR Academy of Sciences, Ul'yanov str. 46, Gorky 603600, 
USSR 

Received 31 January 1990 

Abstract. Symmetric coupling of two critical circle maps near the golden mean rotation 
number is considered. On the basis of a renormalization group method the three universal 
types of interaction are found. The theoretical scaling wedictions are confirmed by numeri- 
cal calculations. 

1. Introduction 

Three types of transition to chaos are now well studied: through period doubling [l], 
through intermittency [2] and through destruction of quasiperiodic motions [3,4]. A 
common feature ofthese scenarios is the possibility of describing the critical phenomena 
by the renormalization group (RG) method. RG analysis allows one to find universal 
quantitative scaling laws both for a structure of a parameter space near a critical point 
and for the motions occurring. On the basis of the RG approach it is possible to describe 
the effect of external noise [5], the universal properties of response function [6], the 
scaling of multiple-frequency quasiperiodic motions [7], etc. An important generaliz- 
ation of the RG deals with continuous and coupled systems. For period doubling this 
generalization was constructed in [SI, and for intermittency in [9]. Hamiltonian systems 
were considered in [IO, 111. In coupled systems universal types of interaction were 
found with non-trivial scaling properties. 

In this paper we describe the universal types of interaction between critical circle 
mappings exhibiting transition to chaos through quasiperiodicity. For a golden mean 
rotation number we find three universal types of coupling. The RG method gives scaling 
constants which are confirmed numerically. 

2. Renormalization group for a circle map 

Transition to chaos through two-frequency torus destruction in dissipative systems 
may be correctly described by a circle mapping, 

( 1 )  
a .  e,,, =f(a,) = 9 , + w  --ssln(2~8,) 
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with two parameters. The parameter w corresponds to the ratio of the frequencies of 
two linear oscillators, while the parameter a corresponds to the nonlinearity level. The 
mapping (1) is usually obtained as a phase transformation of one oscillator through 
a period of the second oscillator. For a < 1 the mapping ( I )  has either a stable periodic 
orbit (resonant state synchronization of the oscillators) or an ergodic invariant set 
(quasiperiodic state). Correspondingly, the rotation number p = lim,-,( f "( t9) - 8 ) / n  
is either rational, p = p / q  (p and 9 are integers, and q is period of the orbit), or 
irrational. For a > 1 the mapping ( I )  is not one-to-one, so chaotic behaviour becomes 
possible. The transition from a periodic orbit to chaos was described in [4, 12, 131. 
Inside a resonance region at the a, w-parameter plane (figure 1) one can find the 
bifurcation lines: line of period doubling D ;  at lines A, and AR some iteration of the 
left (right) extremum of the mapping (1) coincides with the unstable periodic orbit, 
One can single out a point R with chaotic behaviour: for this parameter value both 
extrema are eventually periodic, so a mapping f has 9-invariant intervals, and each 
transforms into itself with stretching. Quasiperiodic motion may be treated as a limit 
of adjusted resonances with large p and q, which approximate the irrational rotation 
number. For large q the point R approaches the critical line a = 1, so one may say 
that quasiperiodic motion breaks to chaos just at a = 1. For some irrational rotation 
numbers, approximating resonances are regularly scaled, suggesting the possibility of 
their RG treatment. These rotation numbers are represented by periodic continued 
fractions. We will consider, following [3,4], the simplest rotation number-the so 
called golden mean p = U  = (A- 1)/2, whose continued fraction is (1, 1,1, .  . .). 
Approximating fractions for U are p i "=  Fn- , /Fm,  where F, are the Fihbonachi num- 
bers, which obey a recurrent relation Fn+l = F, + F,-, , Fo= F, = 1. Correspondingly, 
there may be constructed a series of functionsf, obeying a renormalization relation 131, 
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f"+! =fX-, . (2) 

After scaling of the variable t9 with a constant a, the final transformation takes the form 

w 

Figure 1. A sketch of a resonance Struauie in a circle map ( I ) .  
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The transformation (3) has two fixed points: a trivial one, j ( 8 )  = -1  + 8, a = -U-', 
and a non-trivial analytic function of 4', 

m 

S ( S ) = X  Cm8" (4) 
0 

found numerically in [3,4]. The trivial fixed point describes quasiperiodic motions 
below the critical line ( a  < l ) ,  while the non-trivial fixed point describes the neighbour- 
hood of the critical point a = 1, w = wc.. The value of the constant a = -1.2886.. . for 
the non-trivial fixed point gives scaling of the variable 8. An equation for perturbations 
near the RG fixed point has two significant eigenvalues with absolute values greater 
then 1: 6, = -2.8336..  . and 8, = a2. The constant 6, describes scaling along the critical 
line; in particular, for centres of resonances w r ' w e  have (up ' -  oJoc 6;". The constant 
S2 describes scaling in the transverse direction. In particular, distances Aa'"' from the 
points R,  to the critical line scale as A a ' " ' a 8 ; " .  Thus, the parameter plane ( q w )  
scales in the vicinity of the critical point with constants 6, in w and 6, in a. 

3. Renormalization group for a coupled map 

Let us consider a symmetrical interaction of two identical circle maps of type 1: 

S,+,= f ( f i , )+Eh(8 , ,  %) 

~ p , + i = f ( ~ ~ ) + & h ( ( ~ ~ ,  8,). 
( 5 )  

Here E is a small parameter-coupling constant. We will suppose that in synchronous 
mode, i.e. for 8 = 'p, the interaction vanishes ( h (  8, 8) = 0) and consider nearly syn- 
chronous states. Using the variables 

and neglecting O(vz) terms we obtain from ( 5 )  

U,+, =f(s)  (7) 
ur+i = ( f ' ( ! J t ) + E Y ( W ) ) o t  (8) 

where V ( u ) = d h ( t 9 ,  q) / a4 -ah (B ,  ' p ) /~ Iq l .~=~= . .  Let us apply the renormalization 
transformation (2), (3) to equations (7) and (8). Denoting 

@(U) = f ' ( u ) +  &V( U )  
we may write the renormalization transformation of (8) in the form 

which in first order in E gives 

Taking into account that limn-mfn =f where j is the fixed point given by (4) (for the 
case of a trivial fixed point, see the appendix) we obtain finally 
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We shall look for significant eigenvalues (with absolute values greater then 1) for the 
RG transformation (9) following [3,4]. The eigenfunctions Y(u) are supposed to be 
polynomials with minimal power k After substitution 'Pn( U )  - A " ' P ( u )  in (9) we obtain 
from the coefficients at U' for k #31+2, 
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A ' = a-*'!'( I (  0)) .  

Taking into account that j ' ( j ( 0 ) )  = a4 [3,4] we find two significant eigenvalues, 

A,=a2=1.66, ,  . 

A,=a=-1.28. .  . . 
In the case k = 2  the eitenfunction of (9) can be easily found analytically with the 
substitution ""(U) = Q . f ' ( u ) .  Then due to the identity 

we obtain 

Q n + i = Q n + Q n - ~  

so that 

Q. CC (1  +U)". 

The third eigenvalue is therefore 

A > =  l + u  = 1.61.. . . (11) 

Thus, there are three significant eigenvalues, A , ,  A 2  and A,, and, correspondingly, three 
non-trivial types of interaction. The scaling laws are considered below. 

4. Numerical analysis of scaling 

The RG analysis given in sections 3 and 4 predicts that in a coupled circle map one 
may observe scaling in a five-parameter space (two parameters correspond to an 
uncoupled map and three correspond to significant types of interaction). However, in 
order to obtain appreciable results we shall consider scaling in two-parameter subspaces 
separately for different coupling modes. 

(a) The coupling of the first type occurs if "(0) # 0. This coupling may be repre- 
sented by the following system: 

a .  E l  6,+, = e,+ w -- s1n(2a6,)+-sin[2n(~, - q,)] 
2 a  4.n 

a .  El  
q ,+ ,=q ,+w- - s1n(2 .nq , )+ - s in [2a(q , -~ , )J  

(12) 

2 n  47r 

We shall fix the critical parameter value a = 1 and consider the bifurcation structure 
in the plane ( E , ,  0). The synchronous regimes 6, = 'pi for resonances p'"' are stable 
inside the shaded regions in figure 2. One can see that the whole diagram scales if the 
parameters w and E ,  are multiplied simultaneously by 6, and A , .  For fixed w inside 
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0 . 2  
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w 

Figure 2. Stability regions for resonances of type-l coupling. 

a resonance the synchronous state loses its stability as E ,  increases with the appearance 
of a non-symmetric cycle. 

( b )  For the second type of coupling we know the eigenfunction exactly: '€'(U)= 
?'(U), The corresponding coupled map system is as follows: 

This type of interaction was investigated in [8, 141 where it was called dissipative 
interaction. Using the variables (6) for small v we get 

(14) 

It is easily seen from (14) that dissipative coupling with positive E*  leads to the decrease 
of the variable U .  Thus the coupling tends to synchronize the interacting systems. A 
non-trivial regime may be observed if the synchronous state is chaotic, i.e. the Lyapunov 
number A = (In1 f '( u s ) [ )  is positive. In this case there exists a critical value e2< for which 
a slightly inhomogeneous chaotic regime sets in (see figure 3). The critical value is 
easily obtained from (14): 

vi+, = (1 - E 2 ) f  ' (u,)v . .  

In( 1 - E ~ J + A  = O .  (15) 

The chaotic states of figure 3 correspond to the points R. in the plane ( a ,  w )  (see 
figure 1). For the points R. we have A, - F;' - (  1 +U)-", thus from (15) we obtain 
~ ? ~ - - ( l  +n)-" in accordance with the scaling law ( I  1). 

( c )  For the type-3 coupling '€'(U) - U but we do  not know the eigenfunction '€'( U )  
exactly. However, it is necessary to know the coupling term h(  8, q )  accurately because 
a small part of type-1 or type-2 coupling will disturb the scaling properties due to the 
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Figure 3. Effect of type.2 coupling on the chaotic motion inside the resonance 315: (a) 
r 2 > e 2 , , ;  ( b )  E ~ < E ~ , ~ .  

relations A 3 <  A,, A 3 <  A 2 .  Numerical experiments showed that with good accuracy 
'pure' type-3 coupling may be observed in the following system: 

E l  

411 
a,,, =f(Bj)+-(cos  211eiti+0.565 COS 4 1 1 1 8 j - ~ ~ ~  2.rr'ppi-0.565 C O S ~ T ' ~ ; )  

(16) 
E 

'pi+, = f (q j )+L(cos  2rr'pj+0.565 cos4nqj -cos  21119-0.565 ~ 0 ~ 4 1 1 9 , ) .  
411 
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I 

Figure 4. A sketch of the stability structure lor p""-resonances of type-3 coupling. The 
instability regions are shaded. 

Similarly to type-I coupling we constructed the regions of stability of synchronous 
states in the plane ( E ~ ,  w )  (figure 4). Here, because A, is negative, the instability may 
occur for both signs of E , .  However, the instability regions are very small and adjusted 
to ends of phase-locking intervals. The whole diagram scales if one multiplies ( w  - w c )  
and E,  by 8 ,  and A,. 

5. Conclusion 

We considered the interaction of two maps exhibiting the transition to chaos through 
the golden mean quasiperiodic state. It was shown that there are three significant types 
of coupling (one dissipative and two inertial) with the scaling constants (10) and (11). 
Bifurcation diagrams demonstrate scaling properties of adjusted resonances. The type-1 
coupling with the largest eigenvalue is most significant. This coupling leads to the 
system desynchronization and to onset of asynchronous periodic and quasiperiodic 
regimes. Description of the full bifurcation diagram is, however, beyond the scope of 
the present paper. 
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Appendix 

For a subcritical case the RG transformation (3) has a fixed point 

j(S)= -1  + 9 (L = -m-'. 
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We will use a method described in [4] for obtaining the eigenfunctions of the RG 

transformation (9). Denoting '€',,(U)= A ; @ m ( u ) ,  where m corresponds to a maximal 
degree of the polinomial @,(U), it follows from (9) that 
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For the maximal degree U, we obtain 
A, or A m  = a-'-m, 

There is only one significant eigenvalue A. = -a and the corresponding eigenfunction 
is $'o-f'. When compared with the results of sections 3 and 4 i t  is evident that this 
coupling is of a dissipative type. 
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